aepsych.factory

Submodules

aepsych.factory.factory module

aepsych.factory.factory.default_mean_covar_factory(config)[source]

Default factory for generic GP models

Parameters

config (Config) – Object containing bounds (and potentially other config details).

Returns

Instantiated

ConstantMean and ScaleKernel with priors based on bounds.

Return type

Tuple[gpytorch.means.Mean, gpytorch.kernels.Kernel]

aepsych.factory.factory.monotonic_mean_covar_factory(config)[source]

Default factory for monotonic GP models based on derivative observations.

Parameters

config (Config) – Config containing (at least) bounds, and optionally LSE target.

Returns

Instantiated mean and

scaled RBF kernels with partial derivative observations.

Return type

Tuple[ConstantMeanPartialObsGrad, gpytorch.kernels.ScaleKernel]

aepsych.factory.factory.song_mean_covar_factory(config)[source]

Factory that makes kernels like Song et al. 2018: Linear in intensity dimension (assumed to be the last dimension), RBF in context dimensions, summed.

Parameters

config (Config) – Config object containing (at least) bounds and optionally LSE target.

Returns

Instantiated

constant mean object and additive kernel object.

Return type

Tuple[gpytorch.means.ConstantMean, gpytorch.kernels.AdditiveKernel]

Module contents

aepsych.factory.default_mean_covar_factory(config)[source]

Default factory for generic GP models

Parameters

config (Config) – Object containing bounds (and potentially other config details).

Returns

Instantiated

ConstantMean and ScaleKernel with priors based on bounds.

Return type

Tuple[gpytorch.means.Mean, gpytorch.kernels.Kernel]

aepsych.factory.monotonic_mean_covar_factory(config)[source]

Default factory for monotonic GP models based on derivative observations.

Parameters

config (Config) – Config containing (at least) bounds, and optionally LSE target.

Returns

Instantiated mean and

scaled RBF kernels with partial derivative observations.

Return type

Tuple[ConstantMeanPartialObsGrad, gpytorch.kernels.ScaleKernel]

aepsych.factory.song_mean_covar_factory(config)[source]

Factory that makes kernels like Song et al. 2018: Linear in intensity dimension (assumed to be the last dimension), RBF in context dimensions, summed.

Parameters

config (Config) – Config object containing (at least) bounds and optionally LSE target.

Returns

Instantiated

constant mean object and additive kernel object.

Return type

Tuple[gpytorch.means.ConstantMean, gpytorch.kernels.AdditiveKernel]