aepsych.generators¶
Submodules¶
aepsych.generators.base module¶
- class aepsych.generators.base.AEPsychGenerator[source]¶
Bases:
ABC
,Generic
[AEPsychModelType
]Abstract base class for generators, which are responsible for generating new points to sample.
- baseline_requiring_acqfs = [botorch.acquisition.qNoisyExpectedImprovement, botorch.acquisition.NoisyExpectedImprovement, botorch.acquisition.qLogNoisyExpectedImprovement, botorch.acquisition.LogNoisyExpectedImprovement]¶
- stimuli_per_trial = 1¶
- max_asks: Optional[int] = None¶
aepsych.generators.epsilon_greedy_generator module¶
- class aepsych.generators.epsilon_greedy_generator.EpsilonGreedyGenerator(subgenerator, epsilon=0.1)[source]¶
Bases:
AEPsychGenerator
- Parameters:
subgenerator (AEPsychGenerator) –
epsilon (float) –
- gen(num_points, model)[source]¶
- Parameters:
num_points (int) –
model (ModelProtocol) –
aepsych.generators.manual_generator module¶
- class aepsych.generators.manual_generator.ManualGenerator(lb, ub, points, dim=None, shuffle=True, seed=None)[source]¶
Bases:
AEPsychGenerator
Generator that generates points from a predefined list.
Iniatialize ManualGenerator. :param lb: Lower bounds of each parameter. :type lb: Union[np.ndarray, torch.Tensor] :param ub: Upper bounds of each parameter. :type ub: Union[np.ndarray, torch.Tensor] :param points: The points that will be generated. :type points: Union[np.ndarray, torch.Tensor] :param dim: Dimensionality of the parameter space. If None, it is inferred from lb and ub. :type dim: int, optional :param shuffle: Whether or not to shuffle the order of the points. True by default. :type shuffle: bool
- Parameters:
lb (Union[ndarray, Tensor]) –
ub (Union[ndarray, Tensor]) –
points (Union[ndarray, Tensor]) –
dim (Optional[int]) –
shuffle (bool) –
seed (Optional[int]) –
- gen(num_points=1, model=None)[source]¶
Query next point(s) to run by quasi-randomly sampling the parameter space. :param num_points: Number of points to query. :type num_points: int
- Returns:
Next set of point(s) to evaluate, [num_points x dim].
- Return type:
np.ndarray
- Parameters:
num_points (int) –
model (Optional[AEPsychMixin]) –
- class aepsych.generators.manual_generator.SampleAroundPointsGenerator(lb, ub, window, points, samples_per_point, dim=None, shuffle=True, seed=None)[source]¶
Bases:
ManualGenerator
Generator that samples in a window around reference points in a predefined list.
Iniatialize SampleAroundPointsGenerator. :param lb: Lower bounds of each parameter. :type lb: Union[np.ndarray, torch.Tensor] :param ub: Upper bounds of each parameter. :type ub: Union[np.ndarray, torch.Tensor] :param window: How far away to sample from the reference point along each dimension. :type window: Union[np.ndarray, torch.Tensor] :param points: The points that will be generated. :type points: Union[np.ndarray, torch.Tensor] :param samples_per_point: How many samples around each point to take. :type samples_per_point: int :param dim: Dimensionality of the parameter space. If None, it is inferred from lb and ub. :type dim: int, optional :param shuffle: Whether or not to shuffle the order of the points. True by default. :type shuffle: bool :param seed: Random seed. :type seed: int, optional
- Parameters:
lb (Union[ndarray, Tensor]) –
ub (Union[ndarray, Tensor]) –
window (Union[ndarray, Tensor]) –
points (Union[ndarray, Tensor]) –
samples_per_point (int) –
dim (Optional[int]) –
shuffle (bool) –
seed (Optional[int]) –
aepsych.generators.monotonic_rejection_generator module¶
- aepsych.generators.monotonic_rejection_generator.default_loss_constraint_fun(loss, candidates)[source]¶
Identity transform for constrained optimization.
This simply returns loss as-is. Write your own versions of this for constrained optimization by e.g. interior point method.
- Parameters:
loss (torch.Tensor) – Value of loss at candidate points.
candidates (torch.Tensor) – Location of candidate points.
- Returns:
New loss (unchanged)
- Return type:
torch.Tensor
- class aepsych.generators.monotonic_rejection_generator.MonotonicRejectionGenerator(acqf, acqf_kwargs=None, model_gen_options=None, explore_features=None)[source]¶
Bases:
AEPsychGenerator
[MonotonicRejectionGP
]Generator specifically to be used with MonotonicRejectionGP, which generates new points to sample by minimizing an acquisition function through stochastic gradient descent.
Initialize MonotonicRejectionGenerator. :param acqf: Acquisition function to use. :type acqf: AcquisitionFunction :param acqf_kwargs: Extra arguments to
pass to acquisition function. Defaults to no arguments.
- Parameters:
model_gen_options (Optional[Dict[str, Any]]) – Dictionary with options for generating candidate, such as SGD parameters. See code for all options and their defaults.
explore_features (Optional[Sequence[int]]) – List of features that will be selected randomly and then fixed for acquisition fn optimization.
acqf (MonotonicMCAcquisition) –
acqf_kwargs (Dict[str, object], optional) –
- gen(num_points, model)[source]¶
Query next point(s) to run by optimizing the acquisition function. :param num_points: Number of points to query. :type num_points: int, optional :param model: Fitted model of the data. :type model: AEPsychMixin
- Returns:
Next set of point(s) to evaluate, [num_points x dim].
- Return type:
np.ndarray
- Parameters:
num_points (int) –
model (MonotonicRejectionGP) –
aepsych.generators.monotonic_thompson_sampler_generator module¶
- class aepsych.generators.monotonic_thompson_sampler_generator.MonotonicThompsonSamplerGenerator(n_samples, n_rejection_samples, num_ts_points, target_value, objective, explore_features=None)[source]¶
Bases:
AEPsychGenerator
[MonotonicRejectionGP
]A generator specifically to be used with MonotonicRejectionGP that uses a Thompson-sampling-style approach for gen, rather than using an acquisition function. We draw a posterior sample at a large number of points, and then choose the point that is closest to the target value.
Initialize MonotonicMCAcquisition
- Parameters:
n_samples (int) – Number of samples to select point from.
num_rejection_samples (int) – Number of rejection samples to draw.
num_ts_points (int) – Number of points at which to sample.
target_value (float) – target value that is being looked for
objective (Optional[MCAcquisitionObjective], optional) – Objective transform of the GP output before evaluating the acquisition. Defaults to identity transform.
explore_features (Sequence[int], optional) –
n_rejection_samples (int) –
- gen(num_points, model)[source]¶
Query next point(s) to run by optimizing the acquisition function. :param num_points: Number of points to query. :type num_points: int, optional :param model: Fitted model of the data. :type model: AEPsychMixin
- Returns:
Next set of point(s) to evaluate, [num_points x dim].
- Return type:
np.ndarray
- Parameters:
num_points (int) –
model (MonotonicRejectionGP) –
aepsych.generators.optimize_acqf_generator module¶
- class aepsych.generators.optimize_acqf_generator.OptimizeAcqfGenerator(acqf, acqf_kwargs=None, restarts=10, samps=1000, max_gen_time=None, stimuli_per_trial=1)[source]¶
Bases:
AEPsychGenerator
Generator that chooses points by minimizing an acquisition function.
Initialize OptimizeAcqfGenerator. :param acqf: Acquisition function to use. :type acqf: AcquisitionFunction :param acqf_kwargs: Extra arguments to
pass to acquisition function. Defaults to no arguments.
- Parameters:
restarts (int) – Number of restarts for acquisition function optimization.
samps (int) – Number of samples for quasi-random initialization of the acquisition function optimizer.
max_gen_time (optional, float) – Maximum time (in seconds) to optimize the acquisition function.
acqf (AcquisitionFunction) –
acqf_kwargs (Dict[str, object], optional) –
stimuli_per_trial (int) –
- baseline_requiring_acqfs = [botorch.acquisition.NoisyExpectedImprovement, botorch.acquisition.LogNoisyExpectedImprovement, botorch.acquisition.qNoisyExpectedImprovement, botorch.acquisition.qLogNoisyExpectedImprovement]¶
- gen(num_points, model, **gen_options)[source]¶
Query next point(s) to run by optimizing the acquisition function. :param num_points: Number of points to query. :type num_points: int, optional :param model: Fitted model of the data. :type model: ModelProtocol
- Returns:
Next set of point(s) to evaluate, [num_points x dim].
- Return type:
np.ndarray
- Parameters:
num_points (int) –
model (ModelProtocol) –
aepsych.generators.random_generator module¶
- class aepsych.generators.random_generator.RandomGenerator(lb, ub, dim=None)[source]¶
Bases:
AEPsychGenerator
Generator that generates points randomly without an acquisition function.
Iniatialize RandomGenerator. :param lb: Lower bounds of each parameter. :type lb: Union[np.ndarray, torch.Tensor] :param ub: Upper bounds of each parameter. :type ub: Union[np.ndarray, torch.Tensor] :param dim: Dimensionality of the parameter space. If None, it is inferred from lb and ub. :type dim: int, optional
- Parameters:
lb (Union[ndarray, Tensor]) –
ub (Union[ndarray, Tensor]) –
dim (Optional[int]) –
- gen(num_points=1, model=None)[source]¶
Query next point(s) to run by randomly sampling the parameter space. :param num_points: Number of points to query. Currently, only 1 point can be queried at a time. :type num_points: int, optional
- Returns:
Next set of point(s) to evaluate, [num_points x dim].
- Return type:
np.ndarray
- Parameters:
num_points (int) –
model (Optional[AEPsychMixin]) –
aepsych.generators.sobol_generator module¶
- class aepsych.generators.sobol_generator.SobolGenerator(lb, ub, dim=None, seed=None, stimuli_per_trial=1)[source]¶
Bases:
AEPsychGenerator
Generator that generates points from the Sobol Sequence.
Iniatialize SobolGenerator. :param lb: Lower bounds of each parameter. :type lb: Union[np.ndarray, torch.Tensor] :param ub: Upper bounds of each parameter. :type ub: Union[np.ndarray, torch.Tensor] :param dim: Dimensionality of the parameter space. If None, it is inferred from lb and ub. :type dim: int, optional :param seed: Random seed. :type seed: int, optional
- Parameters:
lb (Union[np.ndarray, torch.Tensor]) –
ub (Union[np.ndarray, torch.Tensor]) –
dim (Optional[int]) –
seed (Optional[int]) –
stimuli_per_trial (int) –
- gen(num_points=1, model=None)[source]¶
Query next point(s) to run by quasi-randomly sampling the parameter space. :param num_points: Number of points to query. :type num_points: int, optional
- Returns:
Next set of point(s) to evaluate, [num_points x dim].
- Return type:
np.ndarray
- Parameters:
num_points (int) –
model (Optional[AEPsychMixin]) –
Module contents¶
- class aepsych.generators.OptimizeAcqfGenerator(acqf, acqf_kwargs=None, restarts=10, samps=1000, max_gen_time=None, stimuli_per_trial=1)[source]¶
Bases:
AEPsychGenerator
Generator that chooses points by minimizing an acquisition function.
Initialize OptimizeAcqfGenerator. :param acqf: Acquisition function to use. :type acqf: AcquisitionFunction :param acqf_kwargs: Extra arguments to
pass to acquisition function. Defaults to no arguments.
- Parameters:
restarts (int) – Number of restarts for acquisition function optimization.
samps (int) – Number of samples for quasi-random initialization of the acquisition function optimizer.
max_gen_time (optional, float) – Maximum time (in seconds) to optimize the acquisition function.
acqf (AcquisitionFunction) –
acqf_kwargs (Dict[str, object], optional) –
stimuli_per_trial (int) –
- baseline_requiring_acqfs = [botorch.acquisition.NoisyExpectedImprovement, botorch.acquisition.LogNoisyExpectedImprovement, botorch.acquisition.qNoisyExpectedImprovement, botorch.acquisition.qLogNoisyExpectedImprovement]¶
- gen(num_points, model, **gen_options)[source]¶
Query next point(s) to run by optimizing the acquisition function. :param num_points: Number of points to query. :type num_points: int, optional :param model: Fitted model of the data. :type model: ModelProtocol
- Returns:
Next set of point(s) to evaluate, [num_points x dim].
- Return type:
np.ndarray
- Parameters:
num_points (int) –
model (ModelProtocol) –
- class aepsych.generators.MonotonicRejectionGenerator(acqf, acqf_kwargs=None, model_gen_options=None, explore_features=None)[source]¶
Bases:
AEPsychGenerator
[MonotonicRejectionGP
]Generator specifically to be used with MonotonicRejectionGP, which generates new points to sample by minimizing an acquisition function through stochastic gradient descent.
Initialize MonotonicRejectionGenerator. :param acqf: Acquisition function to use. :type acqf: AcquisitionFunction :param acqf_kwargs: Extra arguments to
pass to acquisition function. Defaults to no arguments.
- Parameters:
model_gen_options (Optional[Dict[str, Any]]) – Dictionary with options for generating candidate, such as SGD parameters. See code for all options and their defaults.
explore_features (Optional[Sequence[int]]) – List of features that will be selected randomly and then fixed for acquisition fn optimization.
acqf (MonotonicMCAcquisition) –
acqf_kwargs (Dict[str, object], optional) –
- gen(num_points, model)[source]¶
Query next point(s) to run by optimizing the acquisition function. :param num_points: Number of points to query. :type num_points: int, optional :param model: Fitted model of the data. :type model: AEPsychMixin
- Returns:
Next set of point(s) to evaluate, [num_points x dim].
- Return type:
np.ndarray
- Parameters:
num_points (int) –
model (MonotonicRejectionGP) –
- class aepsych.generators.MonotonicThompsonSamplerGenerator(n_samples, n_rejection_samples, num_ts_points, target_value, objective, explore_features=None)[source]¶
Bases:
AEPsychGenerator
[MonotonicRejectionGP
]A generator specifically to be used with MonotonicRejectionGP that uses a Thompson-sampling-style approach for gen, rather than using an acquisition function. We draw a posterior sample at a large number of points, and then choose the point that is closest to the target value.
Initialize MonotonicMCAcquisition
- Parameters:
n_samples (int) – Number of samples to select point from.
num_rejection_samples (int) – Number of rejection samples to draw.
num_ts_points (int) – Number of points at which to sample.
target_value (float) – target value that is being looked for
objective (Optional[MCAcquisitionObjective], optional) – Objective transform of the GP output before evaluating the acquisition. Defaults to identity transform.
explore_features (Sequence[int], optional) –
n_rejection_samples (int) –
- gen(num_points, model)[source]¶
Query next point(s) to run by optimizing the acquisition function. :param num_points: Number of points to query. :type num_points: int, optional :param model: Fitted model of the data. :type model: AEPsychMixin
- Returns:
Next set of point(s) to evaluate, [num_points x dim].
- Return type:
np.ndarray
- Parameters:
num_points (int) –
model (MonotonicRejectionGP) –
- class aepsych.generators.RandomGenerator(lb, ub, dim=None)[source]¶
Bases:
AEPsychGenerator
Generator that generates points randomly without an acquisition function.
Iniatialize RandomGenerator. :param lb: Lower bounds of each parameter. :type lb: Union[np.ndarray, torch.Tensor] :param ub: Upper bounds of each parameter. :type ub: Union[np.ndarray, torch.Tensor] :param dim: Dimensionality of the parameter space. If None, it is inferred from lb and ub. :type dim: int, optional
- Parameters:
lb (Union[ndarray, Tensor]) –
ub (Union[ndarray, Tensor]) –
dim (Optional[int]) –
- gen(num_points=1, model=None)[source]¶
Query next point(s) to run by randomly sampling the parameter space. :param num_points: Number of points to query. Currently, only 1 point can be queried at a time. :type num_points: int, optional
- Returns:
Next set of point(s) to evaluate, [num_points x dim].
- Return type:
np.ndarray
- Parameters:
num_points (int) –
model (Optional[AEPsychMixin]) –
- class aepsych.generators.SobolGenerator(lb, ub, dim=None, seed=None, stimuli_per_trial=1)[source]¶
Bases:
AEPsychGenerator
Generator that generates points from the Sobol Sequence.
Iniatialize SobolGenerator. :param lb: Lower bounds of each parameter. :type lb: Union[np.ndarray, torch.Tensor] :param ub: Upper bounds of each parameter. :type ub: Union[np.ndarray, torch.Tensor] :param dim: Dimensionality of the parameter space. If None, it is inferred from lb and ub. :type dim: int, optional :param seed: Random seed. :type seed: int, optional
- Parameters:
lb (Union[np.ndarray, torch.Tensor]) –
ub (Union[np.ndarray, torch.Tensor]) –
dim (Optional[int]) –
seed (Optional[int]) –
stimuli_per_trial (int) –
- gen(num_points=1, model=None)[source]¶
Query next point(s) to run by quasi-randomly sampling the parameter space. :param num_points: Number of points to query. :type num_points: int, optional
- Returns:
Next set of point(s) to evaluate, [num_points x dim].
- Return type:
np.ndarray
- Parameters:
num_points (int) –
model (Optional[AEPsychMixin]) –
- class aepsych.generators.EpsilonGreedyGenerator(subgenerator, epsilon=0.1)[source]¶
Bases:
AEPsychGenerator
- Parameters:
subgenerator (AEPsychGenerator) –
epsilon (float) –
- gen(num_points, model)[source]¶
- Parameters:
num_points (int) –
model (ModelProtocol) –
- class aepsych.generators.ManualGenerator(lb, ub, points, dim=None, shuffle=True, seed=None)[source]¶
Bases:
AEPsychGenerator
Generator that generates points from a predefined list.
Iniatialize ManualGenerator. :param lb: Lower bounds of each parameter. :type lb: Union[np.ndarray, torch.Tensor] :param ub: Upper bounds of each parameter. :type ub: Union[np.ndarray, torch.Tensor] :param points: The points that will be generated. :type points: Union[np.ndarray, torch.Tensor] :param dim: Dimensionality of the parameter space. If None, it is inferred from lb and ub. :type dim: int, optional :param shuffle: Whether or not to shuffle the order of the points. True by default. :type shuffle: bool
- Parameters:
lb (Union[ndarray, Tensor]) –
ub (Union[ndarray, Tensor]) –
points (Union[ndarray, Tensor]) –
dim (Optional[int]) –
shuffle (bool) –
seed (Optional[int]) –
- gen(num_points=1, model=None)[source]¶
Query next point(s) to run by quasi-randomly sampling the parameter space. :param num_points: Number of points to query. :type num_points: int
- Returns:
Next set of point(s) to evaluate, [num_points x dim].
- Return type:
np.ndarray
- Parameters:
num_points (int) –
model (Optional[AEPsychMixin]) –
- class aepsych.generators.SampleAroundPointsGenerator(lb, ub, window, points, samples_per_point, dim=None, shuffle=True, seed=None)[source]¶
Bases:
ManualGenerator
Generator that samples in a window around reference points in a predefined list.
Iniatialize SampleAroundPointsGenerator. :param lb: Lower bounds of each parameter. :type lb: Union[np.ndarray, torch.Tensor] :param ub: Upper bounds of each parameter. :type ub: Union[np.ndarray, torch.Tensor] :param window: How far away to sample from the reference point along each dimension. :type window: Union[np.ndarray, torch.Tensor] :param points: The points that will be generated. :type points: Union[np.ndarray, torch.Tensor] :param samples_per_point: How many samples around each point to take. :type samples_per_point: int :param dim: Dimensionality of the parameter space. If None, it is inferred from lb and ub. :type dim: int, optional :param shuffle: Whether or not to shuffle the order of the points. True by default. :type shuffle: bool :param seed: Random seed. :type seed: int, optional
- Parameters:
lb (Union[ndarray, Tensor]) –
ub (Union[ndarray, Tensor]) –
window (Union[ndarray, Tensor]) –
points (Union[ndarray, Tensor]) –
samples_per_point (int) –
dim (Optional[int]) –
shuffle (bool) –
seed (Optional[int]) –
- class aepsych.generators.PairwiseOptimizeAcqfGenerator(acqf, acqf_kwargs=None, restarts=10, samps=1000, max_gen_time=None, stimuli_per_trial=1)[source]¶
Bases:
OptimizeAcqfGenerator
Deprecated. Use OptimizeAcqfGenerator instead.
Initialize OptimizeAcqfGenerator. :param acqf: Acquisition function to use. :type acqf: AcquisitionFunction :param acqf_kwargs: Extra arguments to
pass to acquisition function. Defaults to no arguments.
- Parameters:
restarts (int) – Number of restarts for acquisition function optimization.
samps (int) – Number of samples for quasi-random initialization of the acquisition function optimizer.
max_gen_time (optional, float) – Maximum time (in seconds) to optimize the acquisition function.
acqf (AcquisitionFunction) –
acqf_kwargs (Dict[str, object], optional) –
stimuli_per_trial (int) –
- stimuli_per_trial = 2¶
- class aepsych.generators.PairwiseSobolGenerator(lb, ub, dim=None, seed=None, stimuli_per_trial=1)[source]¶
Bases:
SobolGenerator
Deprecated. Use SobolGenerator instead.
Iniatialize SobolGenerator. :param lb: Lower bounds of each parameter. :type lb: Union[np.ndarray, torch.Tensor] :param ub: Upper bounds of each parameter. :type ub: Union[np.ndarray, torch.Tensor] :param dim: Dimensionality of the parameter space. If None, it is inferred from lb and ub. :type dim: int, optional :param seed: Random seed. :type seed: int, optional
- Parameters:
lb (Union[np.ndarray, torch.Tensor]) –
ub (Union[np.ndarray, torch.Tensor]) –
dim (Optional[int]) –
seed (Optional[int]) –
stimuli_per_trial (int) –
- stimuli_per_trial = 2¶
- class aepsych.generators.IntensityAwareSemiPGenerator(acqf, acqf_kwargs=None, restarts=10, samps=1000, max_gen_time=None, stimuli_per_trial=1)[source]¶
Bases:
OptimizeAcqfGenerator
Generator for SemiP. With botorch machinery, in order to optimize acquisition separately over context and intensity, we need two ingredients. 1. An objective that samples from some posterior w.r.t. the context. From the
paper, this is ThresholdBALV and needs the threshold posterior. SemiPThresholdObjective implements this for ThresholdBALV but theoretically this can be any subclass of SemiPObjectiveBase.
- A way to do acquisition over context and intensity separately, which is
provided by this class. We optimize the acquisition function over context dimensions, then conditioned on the optimum we evaluate the intensity at the objective to obtain the intensity value.
We only developed ThresholdBALV that is specific to SemiP, which is what we tested with this generator. It should work with other similar acquisition functions.
Initialize OptimizeAcqfGenerator. :param acqf: Acquisition function to use. :type acqf: AcquisitionFunction :param acqf_kwargs: Extra arguments to
pass to acquisition function. Defaults to no arguments.
- Parameters:
restarts (int) – Number of restarts for acquisition function optimization.
samps (int) – Number of samples for quasi-random initialization of the acquisition function optimizer.
max_gen_time (optional, float) – Maximum time (in seconds) to optimize the acquisition function.
acqf (AcquisitionFunction) –
acqf_kwargs (Dict[str, object], optional) –
stimuli_per_trial (int) –
- gen(num_points, model, context_objective=<class 'aepsych.acquisition.objective.semi_p.SemiPThresholdObjective'>)[source]¶
Query next point(s) to run by optimizing the acquisition function. :param num_points: Number of points to query. :type num_points: int, optional :param model: Fitted model of the data. :type model: ModelProtocol
- Returns:
Next set of point(s) to evaluate, [num_points x dim].
- Return type:
np.ndarray
- Parameters:
num_points (int) –
model (SemiParametricGPModel) –
context_objective (Type) –
- class aepsych.generators.AcqfThompsonSamplerGenerator(acqf, acqf_kwargs=None, samps=1000, stimuli_per_trial=1)[source]¶
Bases:
AEPsychGenerator
Generator that chooses points by minimizing an acquisition function.
Initialize OptimizeAcqfGenerator. :param acqf: Acquisition function to use. :type acqf: AcquisitionFunction :param acqf_kwargs: Extra arguments to
pass to acquisition function. Defaults to no arguments.
- Parameters:
samps (int) – Number of samples for quasi-random initialization of the acquisition function optimizer.
acqf (AcquisitionFunction) –
acqf_kwargs (Dict[str, object], optional) –
stimuli_per_trial (int) –
- baseline_requiring_acqfs = [botorch.acquisition.NoisyExpectedImprovement, botorch.acquisition.LogNoisyExpectedImprovement, botorch.acquisition.qNoisyExpectedImprovement, botorch.acquisition.qLogNoisyExpectedImprovement]¶
- gen(num_points, model, **gen_options)[source]¶
Query next point(s) to run by optimizing the acquisition function. :param num_points: Number of points to query. :type num_points: int, optional :param model: Fitted model of the data. :type model: ModelProtocol
- Returns:
Next set of point(s) to evaluate, [num_points x dim].
- Return type:
np.ndarray
- Parameters:
num_points (int) –
model (ModelProtocol) –