aepsych.plotting¶
aepsych.plotting module¶
- aepsych.plotting.plot_strat(strat, ax=None, true_testfun=None, cred_level=0.95, target_level=0.75, xlabel=None, ylabel=None, yes_label='Yes trial', no_label='No trial', flipx=False, logx=False, gridsize=30, title='', save_path=None, show=True, include_legend=True, include_colorbar=True)[source]¶
Creates a plot of a strategy, showing participants responses on each trial, the estimated response function and threshold, and optionally a ground truth response threshold.
- Parameters:
strat (Strategy) – Strategy object to be plotted. Must have a dimensionality of 2 or less.
ax (plt.Axes, optional) – Matplotlib axis to plot on (if None, creates a new axis). Default: None.
true_testfun (Callable, optional) – Ground truth response function. Should take a n_samples x n_parameters tensor as input and produce the response probability at each sample as output. Default: None.
cred_level (float) – Percentage of posterior mass around the mean to be shaded. Default: 0.95.
target_level (float) – Response probability to estimate the threshold of. Default: 0.75.
xlabel (str) – Label of the x-axis. Default: “Context (abstract)”.
ylabel (str) – Label of the y-axis (if None, defaults to “Response Probability” for 1-d plots or “Intensity (Abstract)” for 2-d plots). Default: None.
yes_label (str) – Label of trials with response of 1. Default: “Yes trial”.
no_label (str) – Label of trials with response of 0. Default: “No trial”.
flipx (bool) –
- Whether the values of the x-axis should be flipped such that the min becomes the max and vice
versa.
(Only valid for 2-d plots.) Default: False.
logx (bool) – Whether the x-axis should be log-transformed. (Only valid for 2-d plots.) Default: False.
gridsize (int) – The number of points to sample each dimension at. Default: 30.
title (str) – Title of the plot. Default: ‘’.
save_path (str, optional) – File name to save the plot to. Default: None.
show (bool) – Whether the plot should be shown in an interactive window. Default: True.
include_legend (bool) – Whether to include the legend in the figure. Default: True.
include_colorbar (bool) – Whether to include the colorbar indicating the probability of “Yes” trials. Default: True.
- Return type:
None
- aepsych.plotting.plot_strat_3d(strat, parnames=None, outcome_label='Yes Trial', slice_dim=0, slice_vals=5, contour_levels=None, probability_space=False, gridsize=30, extent_multiplier=None, save_path=None, show=True)[source]¶
Creates a plot of a 2d slice of a 3D strategy, showing the estimated model or probability response and contours :param strat: Strategy object to be plotted. Must have a dimensionality of 3. :type strat: Strategy :param parnames: list of the parameter names :type parnames: str list :param outcome_label: The label of the outcome variable :type outcome_label: str :param slice_dim: dimension to slice on :type slice_dim: int :param dim_vals: values to take slices; OR number of values to take even slices from :type dim_vals: list of floats or int :param contour_levels: List contour values to plot. Default: None. If true, all integer levels. :type contour_levels: iterable of floats or bool, optional :param probability_space: Whether to plot probability. Default: False :type probability_space: bool :param gridsize: The number of points to sample each dimension at. Default: 30. :type gridsize: int :param extent_multiplier: multipliers for each of the dimensions when plotting. Default:None :type extent_multiplier: list, optional :param save_path: File name to save the plot to. Default: None. :type save_path: str, optional :param show: Whether the plot should be shown in an interactive window. Default: True. :type show: bool
- Parameters:
strat (Strategy) –
parnames (Optional[List[str]]) –
outcome_label (str) –
slice_dim (int) –
slice_vals (Union[List[float], int]) –
contour_levels (Optional[Union[Iterable[float], bool]]) –
probability_space (bool) –
gridsize (int) –
extent_multiplier (Optional[List[float]]) –
save_path (Optional[str]) –
show (bool) –
- Return type:
None
- aepsych.plotting.plot_slice(ax, strat, parnames, slice_dim, slice_val, vmin, vmax, gridsize=30, contour_levels=None, lse=False, extent_multiplier=None)[source]¶
Creates a plot of a 2d slice of a 3D strategy, showing the estimated model or probability response and contours :param strat: Strategy object to be plotted. Must have a dimensionality of 3. :type strat: Strategy :param ax: Matplotlib axis to plot on :type ax: plt.Axes :param parnames: list of the parameter names :type parnames: str list :param slice_dim: dimension to slice on :type slice_dim: int :param slice_vals: value to take the slice along that dimension :type slice_vals: float :param vmin: global model minimum to use for plotting :type vmin: float :param vmax: global model maximum to use for plotting :type vmax: float :param gridsize: The number of points to sample each dimension at. Default: 30. :type gridsize: int :param contour_levels: Contours to plot. Default: None :type contour_levels: int list :param lse: Whether to plot probability. Default: False :type lse: bool :param extent_multiplier: multipliers for each of the dimensions when plotting. Default:None :type extent_multiplier: list, optional
- Parameters:
ax (Axes) –
strat (Strategy) –
parnames (List[str]) –
slice_dim (int) –
slice_val (int) –
vmin (float) –
vmax (float) –
gridsize (int) –
contour_levels (Optional[Sized]) –
lse (bool) –
extent_multiplier (Optional[List]) –