Source code for aepsych.acquisition.bvn

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from math import pi as _pi
from typing import Tuple
import torch


inv_2pi = 1 / (2 * _pi)
_neg_inv_sqrt2 = -1 / (2**0.5)


def _gauss_legendre20(dtype: torch.dtype) -> Tuple[torch.Tensor, torch.Tensor]:
    _abscissae = torch.tensor(
        [
            0.9931285991850949,
            0.9639719272779138,
            0.9122344282513259,
            0.8391169718222188,
            0.7463319064601508,
            0.6360536807265150,
            0.5108670019508271,
            0.3737060887154196,
            0.2277858511416451,
            0.07652652113349733,
        ],
        dtype=dtype,
    )

    _weights = torch.tensor(
        [
            0.01761400713915212,
            0.04060142980038694,
            0.06267204833410906,
            0.08327674157670475,
            0.1019301198172404,
            0.1181945319615184,
            0.1316886384491766,
            0.1420961093183821,
            0.1491729864726037,
            0.1527533871307259,
        ],
        dtype=dtype,
    )
    abscissae = torch.cat([1.0 - _abscissae, 1.0 + _abscissae], dim=0)
    weights = torch.cat([_weights, _weights], dim=0)
    return abscissae, weights


def _ndtr(x: torch.Tensor) -> torch.Tensor:
    """
    Standard normal CDF. Called <phid> in Genz's original code.
    """
    return 0.5 * torch.erfc(_neg_inv_sqrt2 * x)


def _bvnu(
    dh: torch.Tensor,
    dk: torch.Tensor,
    r: torch.Tensor,
) -> torch.Tensor:
    """
    Primary subroutine for bvnu()
    """
    # Precompute some terms
    h = dh
    k = dk
    hk = h * k

    x, w = _gauss_legendre20(dtype=dh.dtype)

    asr = 0.5 * torch.asin(r)
    sn = torch.sin(asr[..., None] * x)
    res = (sn * hk[..., None] - 0.5 * (h**2 + k**2)[..., None]) / (1 - sn**2)
    res = torch.sum(w * torch.exp(res), dim=-1)
    res = res * inv_2pi * asr + _ndtr(-h) * _ndtr(-k)

    return torch.clip(res, 0, 1)


[docs]def bvn_cdf( xu: torch.Tensor, yu: torch.Tensor, r: torch.Tensor, ) -> torch.Tensor: """ Evaluate the bivariate normal CDF. WARNING: Implements only the routine for moderate levels of correlation. Will be inaccurate and should not be used for correlations larger than 0.925. Standard (mean 0, var 1) bivariate normal distribution with correlation r. Evaluated from -inf to xu, and -inf to yu. Based on function developed by Alan Genz: http://www.math.wsu.edu/faculty/genz/software/matlab/bvn.m based in turn on Drezner, Z and G.O. Wesolowsky, (1989), On the computation of the bivariate normal inegral, Journal of Statist. Comput. Simul. 35, pp. 101-107. Args: xu: Upper limits for cdf evaluation in x yu: Upper limits for cdf evaluation in y r: BVN correlation Returns: Tensor of cdf evaluations of same size as xu, yu, and r. """ p = 1 - _ndtr(-xu) - _ndtr(-yu) + _bvnu(xu, yu, r) return torch.clip(p, 0, 1)