Source code for aepsych.acquisition.lse

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from typing import Any, Dict, Optional, Union

import torch
from aepsych.acquisition.objective import ProbitObjective
from botorch.acquisition.input_constructors import acqf_input_constructor
from botorch.acquisition.monte_carlo import (
    MCAcquisitionFunction,
    MCAcquisitionObjective,
    MCSampler,
)
from botorch.models.model import Model
from botorch.sampling.normal import SobolQMCNormalSampler
from botorch.utils.transforms import t_batch_mode_transform
from torch import Tensor


[docs]class MCLevelSetEstimation(MCAcquisitionFunction): def __init__( self, model: Model, target: Union[float, Tensor] = 0.75, beta: Union[float, Tensor] = 3.84, objective: Optional[MCAcquisitionObjective] = None, sampler: Optional[MCSampler] = None, ) -> None: """Monte-carlo level set estimation. Args: model: A fitted model. target (Union[float, Tensor]): the level set (after objective transform) to be estimated. Defult to 0.75. beta (Union[float, Tensor]): a parameter that governs explore-exploit tradeoff. Defult to 3.84. objective (MCAcquisitionObjective, optional): An MCAcquisitionObjective representing the link function (e.g., logistic or probit.) applied on the samples. Can be implemented via GenericMCObjective. sampler (MCSampler, optional): The sampler used for drawing MC samples. """ if sampler is None: sampler = SobolQMCNormalSampler(sample_shape=torch.Size([512])) if objective is None: objective = ProbitObjective() super().__init__(model=model, sampler=sampler, objective=None, X_pending=None) self.objective = objective self.beta = beta self.target = target
[docs] def acquisition(self, obj_samples: torch.Tensor) -> torch.Tensor: """Evaluate the acquisition based on objective samples. Usually you should not call this directly unless you are subclassing this class and modifying how objective samples are generated. Args: obj_samples (torch.Tensor): Samples from the model, transformed by the objective. Should be samples x batch_shape. Returns: torch.Tensor: Acquisition function at the sampled values. """ mean = obj_samples.mean(dim=0) variance = obj_samples.var(dim=0) # prevent numerical issues if probit makes all the values 1 or 0 variance = torch.clamp(variance, min=1e-5) delta = torch.sqrt(self.beta * variance) return delta - torch.abs(mean - self.target)
@t_batch_mode_transform() def forward(self, X: torch.Tensor) -> torch.Tensor: """Evaluate the acquisition function Args: X (torch.Tensor): Points at which to evaluate. Returns: torch.Tensor: Value of the acquisition functiona at these points. """ post = self.model.posterior(X) samples = self.sampler(post) # num_samples x batch_shape x q x d_out return self.acquisition(self.objective(samples, X)).squeeze(-1)
@acqf_input_constructor(MCLevelSetEstimation) def construct_inputs_lse( model: Model, training_data: None, objective: Optional[MCAcquisitionObjective] = None, target: Union[float, Tensor] = 0.75, beta: Union[float, Tensor] = 3.84, sampler: Optional[MCSampler] = None, **kwargs, ) -> Dict[str, Any]: """ Constructs the input dictionary for initializing the MCLevelSetEstimation acquisition function. Args: model (Model): The fitted model to be used. training_data (None): Placeholder for compatibility; not used in this function. objective (MCAcquisitionObjective, optional): Objective function for transforming samples (e.g., logistic or probit). target (Union[float, Tensor]): Level set to be estimated, defaulting to 0.75. beta (Union[float, Tensor]): Parameter controlling explore-exploit tradeoff, default is 3.84. sampler (MCSampler, optional): Sampler for Monte Carlo sampling; defaults to SobolQMCNormalSampler if not provided. Returns: Dict[str, Any]: Dictionary of constructed inputs for the MCLevelSetEstimation acquisition function. """ return { "model": model, "objective": objective, "target": target, "beta": beta, "sampler": sampler, }