Source code for aepsych.acquisition.objective.objective
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
from typing import Optional
import torch
from aepsych.config import Config
from botorch.acquisition.objective import MCAcquisitionObjective
from torch import Tensor
from torch.distributions.normal import Normal
[docs]class AEPsychObjective(MCAcquisitionObjective):
[docs] def inverse(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor:
raise NotImplementedError
[docs]class ProbitObjective(AEPsychObjective):
"""Probit objective
Transforms the input through the normal CDF (probit).
"""
[docs] def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor:
"""Evaluates the objective (normal CDF).
Args:
samples (Tensor): GP samples.
X (Tensor, optional): ignored, here for compatibility
with MCAcquisitionObjective.
Returns:
Tensor: [description]
"""
return Normal(loc=0, scale=1).cdf(samples.squeeze(-1))
[docs] def inverse(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor:
"""Evaluates the inverse of the objective (normal PPF).
Args:
samples (Tensor): GP samples.
X (Tensor, optional): ignored, here for compatibility
with MCAcquisitionObjective.
Returns:
Tensor: [description]
"""
return Normal(loc=0, scale=1).icdf(samples.squeeze(-1))
class FloorLinkObjective(AEPsychObjective):
"""
Wrapper for objectives to add a floor, when
the probability is known not to go below it.
"""
def __init__(self, floor: float = 0.5) -> None:
"""Initialize the objective with a floor value.
Args:
floor (float): The floor value. Defaults to 0.5.
"""
self.floor = floor
super().__init__()
def forward(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor:
"""Evaluates the objective for input x and floor f
Args:
samples (Tensor): GP samples.
X (Tensor, optional): ignored, here for compatibility
with MCAcquisitionObjective.
Returns:
Tensor: outcome probability.
"""
return self.link(samples.squeeze(-1)) * (1 - self.floor) + self.floor
def inverse(self, samples: Tensor, X: Optional[Tensor] = None) -> Tensor:
"""Evaluates the inverse of the objective.
Args:
samples (Tensor): GP samples.
X (Tensor, optional): ignored, here for compatibility
with MCAcquisitionObjective.
Returns:
Tensor: [description]
"""
return self.inverse_link((samples - self.floor) / (1 - self.floor))
def link(self, samples: Tensor) -> Tensor:
"""Evaluates the link function for input x and floor f
Args:
samples (Tensor): GP samples.
Returns:
Tensor: outcome probability.
Note:
This is an abstract method that should be implemented by subclasses.
"""
raise NotImplementedError
def inverse_link(self, samples: Tensor) -> Tensor:
"""Evaluates the inverse link function for input x and floor f
Args:
samples (Tensor): GP samples.
Returns:
Tensor: outcome probability.
Note:
This is an abstract method that should be implemented by subclasses.
"""
raise NotImplementedError
@classmethod
def from_config(cls, config: Config) -> FloorLinkObjective:
"""Create a FloorLinkObjective from a configuration.
Args:
config (Config): Configuration object containing the initialization parameters.
Returns:
FloorLinkObjective: The initialized objective.
"""
floor = config.getfloat(cls.__name__, "floor")
return cls(floor=floor)
[docs]class FloorLogitObjective(FloorLinkObjective):
"""
Logistic sigmoid (aka expit, aka logistic CDF),
but with a floor so that its output is
between floor and 1.0.
"""
[docs] def link(self, samples: Tensor) -> Tensor:
"""Evaluates the link function for input x and floor f
Args:
samples (Tensor): GP samples.
Returns:
Tensor: The Expit function applied to the input samples.
"""
return torch.special.expit(samples)
[docs] def inverse_link(self, samples: Tensor) -> Tensor:
"""Evaluates the inverse link function for input x and floor f
Args:
samples (Tensor): GP samples.
Returns:
Tensor: The logarithm of the inverse link function applied to the input samples.
"""
return torch.special.logit(samples)
[docs]class FloorGumbelObjective(FloorLinkObjective):
"""
Gumbel CDF but with a floor so that its output
is between floor and 1.0. Note that this is not
the standard Gumbel distribution, but rather the
left-skewed Gumbel that arises as the log of the Weibull
distribution, e.g. Treutwein 1995, doi:10.1016/0042-6989(95)00016-X.
"""
[docs] def link(self, samples: Tensor) -> Tensor:
"""Evaluates the link function for input x and floor f
Args:
samples (Tensor): GP samples.
Returns:
Tensor: Transformed tensor with the link function applied, where positive infinity values are replaced with 1.0 and negative infinity values are replaced with 0.0.
"""
return torch.nan_to_num(
-torch.special.expm1(-torch.exp(samples)), posinf=1.0, neginf=0.0
)
[docs] def inverse_link(self, samples: Tensor) -> Tensor:
"""Evaluates the inverse link function for input x and floor f
Args:
samples (Tensor): GP samples.
Returns:
Tensor: The logarithm of the inverse link function applied to the input samples.
"""
return torch.log(-torch.special.log1p(-samples))
[docs]class FloorProbitObjective(FloorLinkObjective):
"""
Probit (aka Gaussian CDF), but with a floor
so that its output is between floor and 1.0.
"""
[docs] def link(self, samples: Tensor) -> Tensor:
"""Evaluates the link function for input x and floor f
Args:
samples (Tensor): GP samples.
Returns:
Tensor: the cumulative distribution function of the standard normal distribution of the input samples.
"""
return Normal(0, 1).cdf(samples)
[docs] def inverse_link(self, samples: Tensor) -> Tensor:
"""Evaluates the inverse link function for input x and floor f
Args:
samples (Tensor): GP samples.
Returns:
Tensor: the inverse cumulative distribution function of the standard normal distribution of the input samples.
"""
return Normal(0, 1).icdf(samples)