Source code for aepsych.factory.pairwise

# (c) Meta Platforms, Inc. and affiliates. Confidential and proprietary.

from typing import List, Tuple, Union

import gpytorch
from aepsych.config import Config
from aepsych.factory.default import (
    _get_default_cov_function,
    _get_default_mean_function,
    default_mean_covar_factory,
)
from aepsych.kernels.pairwisekernel import PairwiseKernel


[docs]def pairwise_mean_covar_factory( config: Config, ) -> Tuple[gpytorch.means.ConstantMean, gpytorch.kernels.ScaleKernel]: """ Creates a mean and covariance function for pairwise GPs. Args: config (Config): Config object containing bounds. Returns: Tuple[gpytorch.means.ConstantMean, gpytorch.kernels.ScaleKernel]: A tuple containing the mean function (ConstantMean) and the covariance function (ScaleKernel).""" lb = config.gettensor("common", "lb") ub = config.gettensor("common", "ub") assert lb.shape[0] == ub.shape[0], "bounds shape mismatch!" assert lb.shape[0] >= 2, "PairwiseKernel requires at least 2 dimensions!" config_dim = lb.shape[0] shared_dims: Union[List[int], None] = config.getlist( "pairwise_mean_covar_factory", "shared_dims", fallback=None ) if shared_dims is not None: shared_dims = [int(d) for d in shared_dims] assert len(shared_dims) < config_dim, "length of shared_dims must be < dim!" for dim in shared_dims: assert dim < len(shared_dims) else: shared_dims = [] base_mean_covar_factory = config.getobj( "pairwise_mean_covar_factory", "base_mean_covar_factory", fallback=default_mean_covar_factory, ) if base_mean_covar_factory is not default_mean_covar_factory: raise NotImplementedError( "Only default_mean_covar_factory is supported for the base factor of pairwise_mean_covar_factory right now!" ) if len(shared_dims) > 0: active_dims = [i for i in range(config_dim) if i not in shared_dims] assert ( len(active_dims) % 2 == 0 ), "dimensionality of non-shared dims must be even!" mean = _get_default_mean_function(config) cov1 = _get_default_cov_function( config, len(active_dims) // 2, stimuli_per_trial=1 ) cov2 = _get_default_cov_function( config, len(shared_dims), active_dims=shared_dims, stimuli_per_trial=1 ) covar = PairwiseKernel(cov1, active_dims=active_dims) * cov2 else: assert config_dim % 2 == 0, "dimensionality must be even!" mean = _get_default_mean_function(config) cov = _get_default_cov_function(config, config_dim // 2, stimuli_per_trial=1) covar = PairwiseKernel(cov) return mean, covar