#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import List, Optional, Type
import numpy as np
import torch
from aepsych.acquisition.objective import ProbitObjective
from aepsych.config import Config
from aepsych.generators.base import AEPsychGenerator
from aepsych.models.monotonic_rejection_gp import MonotonicRejectionGP
from botorch.acquisition.objective import MCAcquisitionObjective
from botorch.utils.sampling import draw_sobol_samples
[docs]class MonotonicThompsonSamplerGenerator(AEPsychGenerator[MonotonicRejectionGP]):
"""A generator specifically to be used with MonotonicRejectionGP that uses a Thompson-sampling-style
approach for gen, rather than using an acquisition function. We draw a posterior sample at a large number
of points, and then choose the point that is closest to the target value.
"""
def __init__(
self,
n_samples: int,
n_rejection_samples: int,
num_ts_points: int,
target_value: float,
objective: MCAcquisitionObjective,
explore_features: Optional[List[Type[int]]] = None,
) -> None:
"""Initialize MonotonicMCAcquisition
Args:
n_samples (int): Number of samples to select point from.
num_rejection_samples (int): Number of rejection samples to draw.
num_ts_points (int): Number of points at which to sample.
target_value (float): target value that is being looked for
objective (Optional[MCAcquisitionObjective], optional): Objective transform of the GP output
before evaluating the acquisition. Defaults to identity transform.
explore_features (Sequence[int], optional)
"""
self.n_samples = n_samples
self.n_rejection_samples = n_rejection_samples
self.num_ts_points = num_ts_points
self.target_value = target_value
self.objective = objective()
self.explore_features = explore_features
[docs] def gen(
self,
num_points: int, # Current implementation only generates 1 point at a time
model: MonotonicRejectionGP,
) -> torch.Tensor:
"""Query next point(s) to run by optimizing the acquisition function.
Args:
num_points (int, optional): Number of points to query.
model (AEPsychMixin): Fitted model of the data.
Returns:
np.ndarray: Next set of point(s) to evaluate, [num_points x dim].
"""
# Generate the points at which to sample
X = draw_sobol_samples(bounds=model.bounds_, n=self.num_ts_points, q=1).squeeze(
1
)
# Fix any explore features
if self.explore_features is not None:
for idx in self.explore_features:
val = (
model.bounds_[0, idx] # type: ignore
+ torch.rand(1) * (model.bounds_[1, idx] - model.bounds_[0, idx]) # type: ignore
).item()
X[:, idx] = val
# Draw n samples
f_samp = model.sample(
X,
num_samples=self.n_samples,
num_rejection_samples=self.n_rejection_samples,
)
# Find the point closest to target
dist = torch.abs(self.objective(f_samp) - self.target_value)
best_indx = torch.argmin(dist, dim=1)
return torch.Tensor(X[best_indx])
[docs] @classmethod
def from_config(cls, config: Config):
classname = cls.__name__
n_samples = config.getint(classname, "num_samples", fallback=1)
n_rejection_samples = config.getint(
classname, "num_rejection_samples", fallback=500
)
num_ts_points = config.getint(classname, "num_ts_points", fallback=1000)
target = config.getfloat(classname, "target", fallback=0.75)
objective = config.getobj(classname, "objective", fallback=ProbitObjective)
explore_features = config.getlist(classname, "explore_idxs", element_type=int, fallback=None) # type: ignore
return cls(
n_samples=n_samples,
n_rejection_samples=n_rejection_samples,
num_ts_points=num_ts_points,
target_value=target,
objective=objective,
explore_features=explore_features, # type: ignore
)