Source code for aepsych.generators.monotonic_thompson_sampler_generator

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from typing import List, Optional, Type

import numpy as np
import torch
from aepsych.acquisition.objective import ProbitObjective
from aepsych.config import Config
from aepsych.generators.base import AEPsychGenerator
from aepsych.models.monotonic_rejection_gp import MonotonicRejectionGP
from botorch.acquisition.objective import MCAcquisitionObjective
from botorch.utils.sampling import draw_sobol_samples


[docs]class MonotonicThompsonSamplerGenerator(AEPsychGenerator[MonotonicRejectionGP]): """A generator specifically to be used with MonotonicRejectionGP that uses a Thompson-sampling-style approach for gen, rather than using an acquisition function. We draw a posterior sample at a large number of points, and then choose the point that is closest to the target value. """ def __init__( self, n_samples: int, n_rejection_samples: int, num_ts_points: int, target_value: float, objective: MCAcquisitionObjective, explore_features: Optional[List[Type[int]]] = None, ) -> None: """Initialize MonotonicMCAcquisition Args: n_samples (int): Number of samples to select point from. num_rejection_samples (int): Number of rejection samples to draw. num_ts_points (int): Number of points at which to sample. target_value (float): target value that is being looked for objective (Optional[MCAcquisitionObjective], optional): Objective transform of the GP output before evaluating the acquisition. Defaults to identity transform. explore_features (Sequence[int], optional) """ self.n_samples = n_samples self.n_rejection_samples = n_rejection_samples self.num_ts_points = num_ts_points self.target_value = target_value self.objective = objective() self.explore_features = explore_features
[docs] def gen( self, num_points: int, # Current implementation only generates 1 point at a time model: MonotonicRejectionGP, ) -> torch.Tensor: """Query next point(s) to run by optimizing the acquisition function. Args: num_points (int, optional): Number of points to query. model (AEPsychMixin): Fitted model of the data. Returns: np.ndarray: Next set of point(s) to evaluate, [num_points x dim]. """ # Generate the points at which to sample X = draw_sobol_samples(bounds=model.bounds_, n=self.num_ts_points, q=1).squeeze( 1 ) # Fix any explore features if self.explore_features is not None: for idx in self.explore_features: val = ( model.bounds_[0, idx] # type: ignore + torch.rand(1) * (model.bounds_[1, idx] - model.bounds_[0, idx]) # type: ignore ).item() X[:, idx] = val # Draw n samples f_samp = model.sample( X, num_samples=self.n_samples, num_rejection_samples=self.n_rejection_samples, ) # Find the point closest to target dist = torch.abs(self.objective(f_samp) - self.target_value) best_indx = torch.argmin(dist, dim=1) return torch.Tensor(X[best_indx])
[docs] @classmethod def from_config(cls, config: Config): classname = cls.__name__ n_samples = config.getint(classname, "num_samples", fallback=1) n_rejection_samples = config.getint( classname, "num_rejection_samples", fallback=500 ) num_ts_points = config.getint(classname, "num_ts_points", fallback=1000) target = config.getfloat(classname, "target", fallback=0.75) objective = config.getobj(classname, "objective", fallback=ProbitObjective) explore_features = config.getlist(classname, "explore_idxs", element_type=int, fallback=None) # type: ignore return cls( n_samples=n_samples, n_rejection_samples=n_rejection_samples, num_ts_points=num_ts_points, target_value=target, objective=objective, explore_features=explore_features, # type: ignore )