Source code for aepsych.generators.sobol_generator

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations

from typing import Dict, Optional, Union

import numpy as np
import torch
from aepsych.config import Config
from aepsych.generators.base import AEPsychGenerator
from aepsych.models.base import AEPsychMixin
from aepsych.utils import _process_bounds
from torch.quasirandom import SobolEngine


[docs]class SobolGenerator(AEPsychGenerator): """Generator that generates points from the Sobol Sequence.""" _requires_model = False def __init__( self, lb: Union[np.ndarray, torch.Tensor], ub: Union[np.ndarray, torch.Tensor], dim: Optional[int] = None, seed: Optional[int] = None, stimuli_per_trial: int = 1, ): """Iniatialize SobolGenerator. Args: lb (Union[np.ndarray, torch.Tensor]): Lower bounds of each parameter. ub (Union[np.ndarray, torch.Tensor]): Upper bounds of each parameter. dim (int, optional): Dimensionality of the parameter space. If None, it is inferred from lb and ub. seed (int, optional): Random seed. """ self.lb, self.ub, self.dim = _process_bounds(lb, ub, dim) self.lb = self.lb.repeat(stimuli_per_trial) self.ub = self.ub.repeat(stimuli_per_trial) self.stimuli_per_trial = stimuli_per_trial self.seed = seed self.engine = SobolEngine( dimension=self.dim * stimuli_per_trial, scramble=True, seed=self.seed )
[docs] def gen( self, num_points: int = 1, model: Optional[AEPsychMixin] = None, # included for API compatibility ): """Query next point(s) to run by quasi-randomly sampling the parameter space. Args: num_points (int, optional): Number of points to query. Returns: np.ndarray: Next set of point(s) to evaluate, [num_points x dim]. """ grid = self.engine.draw(num_points) grid = self.lb + (self.ub - self.lb) * grid if self.stimuli_per_trial == 1: return grid return torch.tensor( np.moveaxis( grid.reshape(num_points, self.stimuli_per_trial, -1).numpy(), -1, -self.stimuli_per_trial, ) )
[docs] @classmethod def from_config(cls, config: Config): classname = cls.__name__ lb = config.gettensor(classname, "lb") ub = config.gettensor(classname, "ub") dim = config.getint(classname, "dim", fallback=None) seed = config.getint(classname, "seed", fallback=None) stimuli_per_trial = config.getint(classname, "stimuli_per_trial") return cls( lb=lb, ub=ub, dim=dim, seed=seed, stimuli_per_trial=stimuli_per_trial )