Source code for aepsych.generators.sobol_generator
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
from typing import Dict, Optional, Union
import numpy as np
import torch
from aepsych.config import Config
from aepsych.generators.base import AEPsychGenerator
from aepsych.models.base import AEPsychMixin
from aepsych.utils import _process_bounds
from torch.quasirandom import SobolEngine
[docs]class SobolGenerator(AEPsychGenerator):
"""Generator that generates points from the Sobol Sequence."""
_requires_model = False
def __init__(
self,
lb: Union[np.ndarray, torch.Tensor],
ub: Union[np.ndarray, torch.Tensor],
dim: Optional[int] = None,
seed: Optional[int] = None,
stimuli_per_trial: int = 1,
):
"""Iniatialize SobolGenerator.
Args:
lb (Union[np.ndarray, torch.Tensor]): Lower bounds of each parameter.
ub (Union[np.ndarray, torch.Tensor]): Upper bounds of each parameter.
dim (int, optional): Dimensionality of the parameter space. If None, it is inferred from lb and ub.
seed (int, optional): Random seed.
"""
self.lb, self.ub, self.dim = _process_bounds(lb, ub, dim)
self.lb = self.lb.repeat(stimuli_per_trial)
self.ub = self.ub.repeat(stimuli_per_trial)
self.stimuli_per_trial = stimuli_per_trial
self.seed = seed
self.engine = SobolEngine(
dimension=self.dim * stimuli_per_trial, scramble=True, seed=self.seed
)
[docs] def gen(
self,
num_points: int = 1,
model: Optional[AEPsychMixin] = None, # included for API compatibility
):
"""Query next point(s) to run by quasi-randomly sampling the parameter space.
Args:
num_points (int, optional): Number of points to query.
Returns:
np.ndarray: Next set of point(s) to evaluate, [num_points x dim].
"""
grid = self.engine.draw(num_points)
grid = self.lb + (self.ub - self.lb) * grid
if self.stimuli_per_trial == 1:
return grid
return torch.tensor(
np.moveaxis(
grid.reshape(num_points, self.stimuli_per_trial, -1).numpy(),
-1,
-self.stimuli_per_trial,
)
)
[docs] @classmethod
def from_config(cls, config: Config):
classname = cls.__name__
lb = config.gettensor(classname, "lb")
ub = config.gettensor(classname, "ub")
dim = config.getint(classname, "dim", fallback=None)
seed = config.getint(classname, "seed", fallback=None)
stimuli_per_trial = config.getint(classname, "stimuli_per_trial")
return cls(
lb=lb, ub=ub, dim=dim, seed=seed, stimuli_per_trial=stimuli_per_trial
)