#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
import abc
import time
from typing import Any, Dict, List, Mapping, Optional, Protocol, Tuple, Union
import gpytorch
import numpy as np
import torch
from aepsych.config import Config, ConfigurableMixin
from aepsych.factory.factory import default_mean_covar_factory
from aepsych.models.utils import get_extremum
from aepsych.utils import dim_grid, get_jnd_multid, make_scaled_sobol, promote_0d
from aepsych.utils_logging import getLogger
from botorch.fit import fit_gpytorch_mll, fit_gpytorch_mll_scipy
from botorch.models.gpytorch import GPyTorchModel
from botorch.posteriors import GPyTorchPosterior
from gpytorch.likelihoods import Likelihood
from gpytorch.mlls import MarginalLogLikelihood
from scipy.optimize import minimize
from scipy.stats import norm
logger = getLogger()
torch.set_default_dtype(torch.double) # TODO: find a better way to prevent type errors
[docs]class ModelProtocol(Protocol):
@property
def _num_outputs(self) -> int:
pass
@property
def outcome_type(self) -> str:
pass
@property
def extremum_solver(self) -> str:
pass
@property
def train_inputs(self) -> torch.Tensor:
pass
@property
def lb(self) -> torch.Tensor:
pass
@property
def ub(self) -> torch.Tensor:
pass
@property
def bounds(self) -> torch.Tensor:
pass
@property
def dim(self) -> int:
pass
[docs] def posterior(self, x: torch.Tensor) -> GPyTorchPosterior:
pass
[docs] def predict(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
pass
@property
def stimuli_per_trial(self) -> int:
pass
@property
def likelihood(self) -> Likelihood:
pass
[docs] def sample(self, x: torch.Tensor, num_samples: int) -> torch.Tensor:
pass
def _get_extremum(
self,
extremum_type: str,
locked_dims: Optional[Mapping[int, List[float]]],
n_samples=1000,
) -> Tuple[float, np.ndarray]:
pass
[docs] def dim_grid(self, gridsize: int = 30) -> torch.Tensor:
pass
[docs] def fit(self, train_x: torch.Tensor, train_y: torch.Tensor, **kwargs: Any) -> None:
pass
[docs] def update(
self, train_x: torch.Tensor, train_y: torch.Tensor, **kwargs: Any
) -> None:
pass
[docs] def p_below_threshold(self, x, f_thresh) -> np.ndarray:
pass
[docs]class AEPsychMixin(GPyTorchModel):
"""Mixin class that provides AEPsych-specific utility methods."""
extremum_solver = "Nelder-Mead"
outcome_types: List[str] = []
@property
def bounds(self):
return torch.stack((self.lb, self.ub))
[docs] def get_max(
self: ModelProtocol,
locked_dims: Optional[Mapping[int, List[float]]] = None,
n_samples: int = 1000,
) -> Tuple[float, np.ndarray]:
"""Return the maximum of the modeled function, subject to constraints
Returns:
Tuple[float, np.ndarray]: Tuple containing the max and its location (argmax).
locked_dims (Mapping[int, List[float]]): Dimensions to fix, so that the
inverse is along a slice of the full surface.
n_samples int: number of coarse grid points to sample for optimization estimate.
"""
locked_dims = locked_dims or {}
return get_extremum(self, "max", self.bounds, locked_dims, n_samples)
[docs] def get_min(
self: ModelProtocol,
locked_dims: Optional[Mapping[int, List[float]]] = None,
n_samples: int = 1000,
) -> Tuple[float, np.ndarray]:
"""Return the minimum of the modeled function, subject to constraints
Returns:
Tuple[float, np.ndarray]: Tuple containing the min and its location (argmin).
locked_dims (Mapping[int, List[float]]): Dimensions to fix, so that the
inverse is along a slice of the full surface.
n_samples int: number of coarse grid points to sample for optimization estimate.
"""
locked_dims = locked_dims or {}
return get_extremum(self, "min", self.bounds, locked_dims, n_samples)
[docs] def inv_query(
self: ModelProtocol,
y: float,
locked_dims: Optional[Mapping[int, List[float]]] = None,
probability_space: bool = False,
n_samples: int = 1000,
) -> Tuple[float, torch.Tensor]:
"""Query the model inverse.
Return nearest x such that f(x) = queried y, and also return the
value of f at that point.
Args:
y (float): Points at which to find the inverse.
locked_dims (Mapping[int, List[float]]): Dimensions to fix, so that the
inverse is along a slice of the full surface.
probability_space (bool, optional): Is y (and therefore the
returned nearest_y) in probability space instead of latent
function space? Defaults to False.
Returns:
Tuple[float, np.ndarray]: Tuple containing the value of f
nearest to queried y and the x position of this value.
"""
if probability_space:
assert (
self.outcome_type == "binary"
), f"Cannot get probability space for outcome_type '{self.outcome_type}'"
locked_dims = locked_dims or {}
def model_distance(x, pt, probability_space):
return np.abs(
self.predict(torch.tensor([x]), probability_space=probability_space)[0]
.detach()
.numpy()
- pt
)
# Look for point with value closest to y, subject the dict of locked dims
query_lb = self.lb.clone()
query_ub = self.ub.clone()
for locked_dim in locked_dims.keys():
dim_values = locked_dims[locked_dim]
if len(dim_values) == 1:
query_lb[locked_dim] = dim_values[0]
query_ub[locked_dim] = dim_values[0]
else:
query_lb[locked_dim] = dim_values[0]
query_ub[locked_dim] = dim_values[1]
d = make_scaled_sobol(query_lb, query_ub, n_samples, seed=0)
bounds = zip(query_lb.numpy(), query_ub.numpy())
fmean, _ = self.predict(d, probability_space=probability_space)
f = torch.abs(fmean - y)
estimate = d[torch.where(f == torch.min(f))[0][0]].numpy()
a = minimize(
model_distance,
estimate,
args=(y, probability_space),
method=self.extremum_solver,
bounds=bounds,
)
val = self.predict(torch.tensor([a.x]), probability_space=probability_space)[
0
].item()
return val, torch.Tensor(a.x)
[docs] def get_jnd(
self: ModelProtocol,
grid: Optional[Union[np.ndarray, torch.Tensor]] = None,
cred_level: Optional[float] = None,
intensity_dim: int = -1,
confsamps: int = 500,
method: str = "step",
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]:
"""Calculate the JND.
Note that JND can have multiple plausible definitions
outside of the linear case, so we provide options for how to compute it.
For method="step", we report how far one needs to go over in stimulus
space to move 1 unit up in latent space (this is a lot of people's
conventional understanding of the JND).
For method="taylor", we report the local derivative, which also maps to a
1st-order Taylor expansion of the latent function. This is a formal
generalization of JND as defined in Weber's law.
Both definitions are equivalent for linear psychometric functions.
Args:
grid (Optional[np.ndarray], optional): Mesh grid over which to find the JND.
Defaults to a square grid of size as determined by aepsych.utils.dim_grid
cred_level (float, optional): Credible level for computing an interval.
Defaults to None, computing no interval.
intensity_dim (int, optional): Dimension over which to compute the JND.
Defaults to -1.
confsamps (int, optional): Number of posterior samples to use for
computing the credible interval. Defaults to 500.
method (str, optional): "taylor" or "step" method (see docstring).
Defaults to "step".
Raises:
RuntimeError: for passing an unknown method.
Returns:
Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]: either the
mean JND, or a median, lower, upper tuple of the JND posterior.
"""
if grid is None:
grid = self.dim_grid()
else:
grid = torch.tensor(grid)
# this is super awkward, back into intensity dim grid assuming a square grid
gridsize = int(grid.shape[0] ** (1 / grid.shape[1]))
coords = torch.linspace(
self.lb[intensity_dim].item(), self.ub[intensity_dim].item(), gridsize
)
if cred_level is None:
fmean, _ = self.predict(grid)
fmean = fmean.reshape(*[gridsize for i in range(self.dim)])
if method == "taylor":
return torch.tensor(1 / np.gradient(fmean, coords, axis=intensity_dim))
elif method == "step":
return torch.clip(
torch.tensor(
get_jnd_multid(
fmean.detach().numpy(),
coords.detach().numpy(),
mono_dim=intensity_dim,
)
),
0,
np.inf,
)
alpha = 1 - cred_level # type: ignore
qlower = alpha / 2
qupper = 1 - alpha / 2
fsamps = self.sample(grid, confsamps)
if method == "taylor":
jnds = torch.tensor(
1
/ np.gradient(
fsamps.reshape(confsamps, *[gridsize for i in range(self.dim)]),
coords,
axis=intensity_dim,
)
)
elif method == "step":
samps = [s.reshape((gridsize,) * self.dim) for s in fsamps]
jnds = torch.stack(
[get_jnd_multid(s, coords, mono_dim=intensity_dim) for s in samps]
)
else:
raise RuntimeError(f"Unknown method {method}!")
upper = torch.clip(torch.quantile(jnds, qupper, axis=0), 0, np.inf) # type: ignore
lower = torch.clip(torch.quantile(jnds, qlower, axis=0), 0, np.inf) # type: ignore
median = torch.clip(torch.quantile(jnds, 0.5, axis=0), 0, np.inf) # type: ignore
return median, lower, upper
[docs] def dim_grid(
self: ModelProtocol,
gridsize: int = 30,
slice_dims: Optional[Mapping[int, float]] = None,
) -> torch.Tensor:
return dim_grid(self.lb, self.ub, self.dim, gridsize, slice_dims)
[docs] def set_train_data(self, inputs=None, targets=None, strict=False):
"""
:param torch.Tensor inputs: The new training inputs.
:param torch.Tensor targets: The new training targets.
:param bool strict: (default False, ignored). Here for compatibility with
input transformers. TODO: actually use this arg or change input transforms
to not require it.
"""
if inputs is not None:
self.train_inputs = (inputs,)
if targets is not None:
self.train_targets = targets
[docs] def forward(self, x: torch.Tensor) -> gpytorch.distributions.MultivariateNormal:
"""Evaluate GP
Args:
x (torch.Tensor): Tensor of points at which GP should be evaluated.
Returns:
gpytorch.distributions.MultivariateNormal: Distribution object
holding mean and covariance at x.
"""
transformed_x = self.normalize_inputs(x)
mean_x = self.mean_module(transformed_x)
covar_x = self.covar_module(transformed_x)
pred = gpytorch.distributions.MultivariateNormal(mean_x, covar_x)
return pred
def _fit_mll(
self,
mll: MarginalLogLikelihood,
optimizer_kwargs: Optional[Dict[str, Any]] = None,
optimizer=fit_gpytorch_mll_scipy,
**kwargs,
) -> None:
self.train()
train_x, train_y = mll.model.train_inputs[0], mll.model.train_targets
optimizer_kwargs = {} if optimizer_kwargs is None else optimizer_kwargs.copy()
max_fit_time = kwargs.pop("max_fit_time", self.max_fit_time)
if max_fit_time is not None:
# figure out how long evaluating a single samp
starttime = time.time()
_ = mll(self(train_x), train_y)
single_eval_time = time.time() - starttime
n_eval = int(max_fit_time / single_eval_time)
optimizer_kwargs["options"] = {"maxfun": n_eval}
logger.info(f"fit maxfun is {n_eval}")
starttime = time.time()
res = fit_gpytorch_mll(
mll, optimizer=optimizer, optimizer_kwargs=optimizer_kwargs, **kwargs
)
return res
[docs] def p_below_threshold(self, x, f_thresh) -> np.ndarray:
f, var = self.predict(x)
return norm.cdf((f_thresh - f.detach().numpy()) / var.sqrt().detach().numpy())
[docs]class AEPsychModel(ConfigurableMixin, abc.ABC):
extremum_solver = "Nelder-Mead"
outcome_type: Optional[str] = None
[docs] def predict(
self: GPyTorchModel, x: Union[torch.Tensor, np.ndarray]
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Query the model for posterior mean and variance.
Args:
x (Union[torch.Tensor, np.ndarray]): Points at which to predict from the model.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Posterior mean and variance at queried points.
"""
with torch.no_grad():
post = self.posterior(x)
fmean = post.mean.squeeze()
fvar = post.variance.squeeze()
return promote_0d(fmean), promote_0d(fvar)
[docs] def predict_probability(self: GPyTorchModel, x: Union[torch.Tensor, np.ndarray]):
raise NotImplementedError
[docs] def sample(
self: GPyTorchModel, x: Union[torch.Tensor, np.ndarray], n: int
) -> torch.Tensor:
"""Sample the model posterior at the given points.
Args:
x (Union[torch.Tensor, np.ndarray]): Points at which to sample from the model.
n (int): Number of samples to take at each point.
Returns:
torch.Tensor: Posterior samples at queried points. Shape is n x len(x) x number of outcomes.
"""
return self.posterior(x).sample(torch.Size([n]))
[docs] @classmethod
def get_config_options(cls, config: Config, name: Optional[str] = None) -> Dict:
if name is None:
name = cls.__name__
mean_covar_factory = config.getobj(
name, "mean_covar_factory", fallback=default_mean_covar_factory
)
mean, covar = mean_covar_factory(config)
likelihood_cls = config.getobj(name, "likelihood", fallback=None)
if likelihood_cls is not None:
if hasattr(likelihood_cls, "from_config"):
likelihood = likelihood_cls.from_config(config)
else:
likelihood = likelihood_cls()
else:
likelihood = None # fall back to __init__ default
max_fit_time = config.getfloat(name, "max_fit_time", fallback=None)
options = {
"likelihood": likelihood,
"covar_module": covar,
"mean_module": mean,
"max_fit_time": max_fit_time,
}
return options
[docs] def get_max(
self,
bounds: torch.Tensor,
locked_dims: Optional[Mapping[int, List[float]]] = None,
n_samples: int = 1000,
) -> Tuple[float, np.ndarray]:
"""Return the maximum of the modeled function, subject to constraints
Args:
bounds (torch.Tensor): The lower and upper bounds in the parameter space to search for the maximum,
formatted as a 2xn tensor, where d is the number of parameters.
locked_dims (Mapping[int, List[float]]): Dimensions to fix, so that the
inverse is along a slice of the full surface.
n_samples int: number of coarse grid points to sample for optimization estimate.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple containing the max and its location (argmax).
"""
locked_dims = locked_dims or {}
return get_extremum(self, "max", bounds, locked_dims, n_samples)
[docs] def get_min(
self,
bounds: torch.Tensor,
locked_dims: Optional[Mapping[int, List[float]]] = None,
n_samples: int = 1000,
) -> Tuple[float, np.ndarray]:
"""Return the minimum of the modeled function, subject to constraints
Args:
bounds (torch.Tensor): The lower and upper bounds in the parameter space to search for the minimum,
formatted as a 2xn tensor, where d is the number of parameters.
locked_dims (Mapping[int, List[float]]): Dimensions to fix, so that the
inverse is along a slice of the full surface.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple containing the min and its location (argmin).
"""
locked_dims = locked_dims or {}
return get_extremum(self, "min", bounds, locked_dims, n_samples)
[docs] def inv_query(
self,
y: float,
bounds: torch.Tensor,
locked_dims: Optional[Mapping[int, List[float]]] = None,
probability_space: bool = False,
n_samples: int = 1000,
) -> Tuple[float, torch.Tensor]:
"""Query the model inverse.
Return nearest x such that f(x) = queried y, and also return the
value of f at that point.
Args:
y (float): Points at which to find the inverse.
locked_dims (Mapping[int, List[float]]): Dimensions to fix, so that the
inverse is along a slice of the full surface.
probability_space (bool): Is y (and therefore the
returned nearest_y) in probability space instead of latent
function space? Defaults to False.
Returns:
Tuple[float, np.ndarray]: Tuple containing the value of f
nearest to queried y and the x position of this value.
"""
if probability_space:
assert (
self.outcome_type == "binary" or self.outcome_type is None
), f"Cannot get probability space for outcome_type '{self.outcome_type}'"
pred_function = self.predict_probability
else:
pred_function = self.predict
locked_dims = locked_dims or {}
def model_distance(x, pt, probability_space):
return np.abs(pred_function(torch.tensor([x]))[0].detach().numpy() - pt)
# Look for point with value closest to y, subject the dict of locked dims
query_lb = bounds[0]
query_ub = bounds[-1]
for locked_dim in locked_dims.keys():
dim_values = locked_dims[locked_dim]
if len(dim_values) == 1:
query_lb[locked_dim] = dim_values[0]
query_ub[locked_dim] = dim_values[0]
else:
query_lb[locked_dim] = dim_values[0]
query_ub[locked_dim] = dim_values[1]
d = make_scaled_sobol(query_lb, query_ub, n_samples, seed=0)
opt_bounds = zip(query_lb.numpy(), query_ub.numpy())
fmean, _ = pred_function(d)
f = torch.abs(fmean - y)
estimate = d[torch.where(f == torch.min(f))[0][0]].numpy()
a = minimize(
model_distance,
estimate,
args=(y, probability_space),
method=self.extremum_solver,
bounds=opt_bounds,
)
val = pred_function(torch.tensor([a.x]))[0].item()
return val, torch.Tensor(a.x)
[docs] @abc.abstractmethod
def get_mll_class(self):
raise NotImplementedError
[docs] def fit(self):
mll_class = self.get_mll_class()
mll = mll_class(self.likelihood, self)
fit_gpytorch_mll(mll)