Source code for aepsych.plotting

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import warnings
from typing import Any, Callable, Iterable, List, Optional, Union

import matplotlib.pyplot as plt
import numpy as np

from aepsych.strategy import Strategy
from aepsych.utils import get_lse_contour, get_lse_interval, make_scaled_sobol
from scipy.stats import norm


[docs]def plot_strat( strat: Strategy, ax: Optional[plt.Axes] = None, true_testfun: Optional[Callable] = None, cred_level: float = 0.95, target_level: Optional[float] = 0.75, xlabel: Optional[str] = None, ylabel: Optional[str] = None, yes_label: str = "Yes trial", no_label: str = "No trial", flipx: bool = False, logx: bool = False, gridsize: int = 30, title: str = "", save_path: Optional[str] = None, show: bool = True, include_legend: bool = True, include_colorbar: bool = True, ) -> None: """Creates a plot of a strategy, showing participants responses on each trial, the estimated response function and threshold, and optionally a ground truth response threshold. Args: strat (Strategy): Strategy object to be plotted. Must have a dimensionality of 2 or less. ax (plt.Axes, optional): Matplotlib axis to plot on (if None, creates a new axis). Default: None. true_testfun (Callable, optional): Ground truth response function. Should take a n_samples x n_parameters tensor as input and produce the response probability at each sample as output. Default: None. cred_level (float): Percentage of posterior mass around the mean to be shaded. Default: 0.95. target_level (float): Response probability to estimate the threshold of. Default: 0.75. xlabel (str): Label of the x-axis. Default: "Context (abstract)". ylabel (str): Label of the y-axis (if None, defaults to "Response Probability" for 1-d plots or "Intensity (Abstract)" for 2-d plots). Default: None. yes_label (str): Label of trials with response of 1. Default: "Yes trial". no_label (str): Label of trials with response of 0. Default: "No trial". flipx (bool): Whether the values of the x-axis should be flipped such that the min becomes the max and vice versa. (Only valid for 2-d plots.) Default: False. logx (bool): Whether the x-axis should be log-transformed. (Only valid for 2-d plots.) Default: False. gridsize (int): The number of points to sample each dimension at. Default: 30. title (str): Title of the plot. Default: ''. save_path (str, optional): File name to save the plot to. Default: None. show (bool): Whether the plot should be shown in an interactive window. Default: True. include_legend (bool): Whether to include the legend in the figure. Default: True. include_colorbar (bool): Whether to include the colorbar indicating the probability of "Yes" trials. Default: True. """ assert ( "binary" in strat.outcome_types ), f"Plotting not supported for outcome_type {strat.outcome_types[0]}" if target_level is not None and not hasattr(strat.model, "monotonic_idxs"): warnings.warn( "Threshold estimation may not be accurate for non-monotonic models." ) if ax is None: _, ax = plt.subplots() if xlabel is None: xlabel = "Context (abstract)" dim = strat.dim if dim == 1: if ylabel is None: ylabel = "Response Probability" _plot_strat_1d( strat, ax, true_testfun, cred_level, target_level, xlabel, ylabel, yes_label, no_label, gridsize, ) elif dim == 2: if ylabel is None: ylabel = "Intensity (abstract)" _plot_strat_2d( strat, ax, true_testfun, cred_level, target_level, xlabel, ylabel, yes_label, no_label, flipx, logx, gridsize, include_colorbar, ) elif dim == 3: raise RuntimeError("Use plot_strat_3d for 3d plots!") else: raise NotImplementedError("No plots for >3d!") ax.set_title(title) if include_legend: anchor = (1.4, 0.5) if include_colorbar and dim > 1 else (1, 0.5) plt.legend(loc="center left", bbox_to_anchor=anchor) if save_path is not None: plt.savefig(save_path, bbox_inches="tight") if show: plt.tight_layout() if include_legend or (include_colorbar and dim > 1): plt.subplots_adjust(left=0.1, bottom=0.25, top=0.75) plt.show()
def _plot_strat_1d( strat: Strategy, ax: plt.Axes, true_testfun: Optional[Callable], cred_level: float, target_level: Optional[float], xlabel: str, ylabel: str, yes_label: str, no_label: str, gridsize: int, ): """Helper function for creating 1-d plots. See plot_strat for an explanation of the arguments.""" x, y = strat.x, strat.y assert x is not None and y is not None, "No data to plot!" grid = strat.model.dim_grid(gridsize=gridsize) samps = norm.cdf(strat.model.sample(grid, num_samples=10000).detach()) phimean = samps.mean(0) ax.plot(np.squeeze(grid), phimean) if cred_level is not None: upper = np.quantile(samps, cred_level, axis=0) lower = np.quantile(samps, 1 - cred_level, axis=0) ax.fill_between( np.squeeze(grid), lower, upper, alpha=0.3, hatch="///", edgecolor="gray", label=f"{cred_level*100:.0f}% posterior mass", ) if target_level is not None: from aepsych.utils import interpolate_monotonic threshold_samps = [ interpolate_monotonic( grid.squeeze().numpy(), s, target_level, strat.lb[0], strat.ub[0] ) for s in samps ] thresh_med = np.mean(threshold_samps) thresh_lower = np.quantile(threshold_samps, q=1 - cred_level) thresh_upper = np.quantile(threshold_samps, q=cred_level) ax.errorbar( thresh_med, target_level, xerr=np.r_[thresh_med - thresh_lower, thresh_upper - thresh_med][:, None], capsize=5, elinewidth=1, label=f"Est. {target_level*100:.0f}% threshold \n(with {cred_level*100:.0f}% posterior \nmass marked)", ) if true_testfun is not None: true_f = true_testfun(grid) ax.plot(grid, true_f.squeeze(), label="True function") if target_level is not None: true_thresh = interpolate_monotonic( grid.squeeze().numpy(), true_f.squeeze(), target_level, strat.lb[0], strat.ub[0], ) ax.plot( true_thresh, target_level, "o", label=f"True {target_level*100:.0f}% threshold", ) ax.scatter( x[y == 0, 0], np.zeros_like(x[y == 0, 0]), marker=3, color="r", label=no_label, ) ax.scatter( x[y == 1, 0], np.zeros_like(x[y == 1, 0]), marker=3, color="b", label=yes_label, ) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) return ax def _plot_strat_2d( strat: Strategy, ax: plt.Axes, true_testfun: Optional[Callable], cred_level: float, target_level: Optional[float], xlabel: str, ylabel: str, yes_label: str, no_label: str, flipx: bool, logx: bool, gridsize: int, include_colorbar: bool, ): """Helper function for creating 2-d plots. See plot_strat for an explanation of the arguments.""" x, y = strat.x, strat.y assert x is not None and y is not None, "No data to plot!" # make sure the model is fit well if we've been limiting fit time strat.model.fit(train_x=x, train_y=y, max_fit_time=None) grid = strat.model.dim_grid(gridsize=gridsize) fmean, _ = strat.model.predict(grid) phimean = norm.cdf(fmean.reshape(gridsize, gridsize).detach().numpy()).T extent = np.r_[strat.lb[0], strat.ub[0], strat.lb[1], strat.ub[1]] colormap = ax.imshow( phimean, aspect="auto", origin="lower", extent=extent, alpha=0.5 ) if flipx: extent = np.r_[strat.lb[0], strat.ub[0], strat.ub[1], strat.lb[1]] colormap = ax.imshow( phimean, aspect="auto", origin="upper", extent=extent, alpha=0.5 ) else: extent = np.r_[strat.lb[0], strat.ub[0], strat.lb[1], strat.ub[1]] colormap = ax.imshow( phimean, aspect="auto", origin="lower", extent=extent, alpha=0.5 ) # hacky relabel to be in logspace if logx: locs = np.arange(strat.lb[0], strat.ub[0]) ax.set_xticks(ticks=locs) ax.set_xticklabels(2.0**locs) ax.plot(x[y == 0, 0], x[y == 0, 1], "ro", alpha=0.7, label=no_label) ax.plot(x[y == 1, 0], x[y == 1, 1], "bo", alpha=0.7, label=yes_label) if target_level is not None: # plot threshold mono_grid = np.linspace(strat.lb[1], strat.ub[1], num=gridsize) context_grid = np.linspace(strat.lb[0], strat.ub[0], num=gridsize) thresh_75, lower, upper = get_lse_interval( model=strat.model, mono_grid=mono_grid, target_level=target_level, cred_level=cred_level, mono_dim=1, lb=mono_grid.min(), ub=mono_grid.max(), gridsize=gridsize, ) ax.plot( context_grid, thresh_75, label=f"Est. {target_level*100:.0f}% threshold \n(with {cred_level*100:.0f}% posterior \nmass shaded)", ) ax.fill_between( context_grid, lower, upper, alpha=0.3, hatch="///", edgecolor="gray" ) if true_testfun is not None: true_f = true_testfun(grid).reshape(gridsize, gridsize) true_thresh = get_lse_contour( true_f, mono_grid, level=target_level, lb=strat.lb[-1], ub=strat.ub[-1] ) ax.plot(context_grid, true_thresh, label="Ground truth threshold") ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) if include_colorbar: colorbar = plt.colorbar(colormap, ax=ax) colorbar.set_label(f"Probability of {yes_label}")
[docs]def plot_strat_3d( strat: Strategy, parnames: Optional[List[str]] = None, outcome_label: str = "Yes Trial", slice_dim: int = 0, slice_vals: Union[List[float], int] = 5, contour_levels: Optional[Union[Iterable[float], bool]] = None, probability_space: bool = False, gridsize: int = 30, extent_multiplier: Optional[List[float]] = None, save_path: Optional[str] = None, show: bool = True, ): """Creates a plot of a 2d slice of a 3D strategy, showing the estimated model or probability response and contours Args: strat (Strategy): Strategy object to be plotted. Must have a dimensionality of 3. parnames (str list): list of the parameter names outcome_label (str): The label of the outcome variable slice_dim (int): dimension to slice on dim_vals (list of floats or int): values to take slices; OR number of values to take even slices from contour_levels (iterable of floats or bool, optional): List contour values to plot. Default: None. If true, all integer levels. probability_space (bool): Whether to plot probability. Default: False gridsize (int): The number of points to sample each dimension at. Default: 30. extent_multiplier (list, optional): multipliers for each of the dimensions when plotting. Default:None save_path (str, optional): File name to save the plot to. Default: None. show (bool): Whether the plot should be shown in an interactive window. Default: True. """ assert strat.model is not None, "Cannot plot without a model!" contour_levels_list = contour_levels or [] if parnames is None: parnames = ["x1", "x2", "x3"] # Get global min/max for all slices if probability_space: vmax = 1 vmin = 0 if contour_levels is True: contour_levels_list = [0.75] else: d = make_scaled_sobol(strat.lb, strat.ub, 2000) post = strat.model.posterior(d) fmean = post.mean.squeeze().detach().numpy() vmax = np.max(fmean) vmin = np.min(fmean) if contour_levels is True: contour_levels_list = np.arange(np.ceil(vmin), vmax + 1) # slice_vals is either a list of values or an integer number of values to slice on if type(slice_vals) is int: slices = np.linspace(strat.lb[slice_dim], strat.ub[slice_dim], slice_vals) slices = np.around(slices, 4) elif type(slice_vals) is not list: raise TypeError("slice_vals must be either an integer or a list of values") else: slices = np.array(slice_vals) # make mypy happy, note that this can't be more specific # because of https://github.com/numpy/numpy/issues/24738 axs: np.ndarray[Any, Any] _, axs = plt.subplots(1, len(slices), constrained_layout=True, figsize=(20, 3)) # type: ignore assert len(slices) > 1, "Must have at least 2 slices" for _i, dim_val in enumerate(slices): img = plot_slice( axs[_i], strat, parnames, slice_dim, dim_val, vmin, vmax, gridsize, contour_levels_list, probability_space, extent_multiplier, ) plt_parnames = np.delete(parnames, slice_dim) axs[0].set_ylabel(plt_parnames[1]) cbar = plt.colorbar(img, ax=axs[-1]) if probability_space: cbar.ax.set_ylabel(f"Probability of {outcome_label}") else: cbar.ax.set_ylabel(outcome_label) for clevel in contour_levels_list: # type: ignore cbar.ax.axhline(y=clevel, c="w") if save_path is not None: plt.savefig(save_path) if show: plt.show()
[docs]def plot_slice( ax, strat, parnames, slice_dim, slice_val, vmin, vmax, gridsize=30, contour_levels=None, lse=False, extent_multiplier=None, ): """Creates a plot of a 2d slice of a 3D strategy, showing the estimated model or probability response and contours Args: strat (Strategy): Strategy object to be plotted. Must have a dimensionality of 3. ax (plt.Axes): Matplotlib axis to plot on parnames (str list): list of the parameter names slice_dim (int): dimension to slice on slice_vals (float): value to take the slice along that dimension vmin (float): global model minimum to use for plotting vmax (float): global model maximum to use for plotting gridsize (int): The number of points to sample each dimension at. Default: 30. contour_levels (int list): Contours to plot. Default: None lse (bool): Whether to plot probability. Default: False extent_multiplier (list, optional): multipliers for each of the dimensions when plotting. Default:None """ extent = np.c_[strat.lb, strat.ub].reshape(-1) x = strat.model.dim_grid(gridsize=gridsize, slice_dims={slice_dim: slice_val}) if lse: fmean, fvar = strat.predict(x) fmean = fmean.detach().numpy().reshape(gridsize, gridsize) fmean = norm.cdf(fmean) else: post = strat.model.posterior(x) fmean = post.mean.squeeze().detach().numpy().reshape(gridsize, gridsize) # optionally rescale extents to correct values if extent_multiplier is not None: extent_scaled = extent * np.repeat(extent_multiplier, 2) dim_val_scaled = slice_val * extent_multiplier[slice_dim] else: extent_scaled = extent dim_val_scaled = slice_val plt_extents = np.delete(extent_scaled, [slice_dim * 2, slice_dim * 2 + 1]) plt_parnames = np.delete(parnames, slice_dim) img = ax.imshow( fmean.T, extent=plt_extents, origin="lower", aspect="auto", vmin=vmin, vmax=vmax ) ax.set_title(parnames[slice_dim] + "=" + str(dim_val_scaled)) ax.set_xlabel(plt_parnames[0]) if len(contour_levels) > 0: ax.contour( fmean.T, contour_levels, colors="w", extent=plt_extents, origin="lower", aspect="auto", ) return img